CITY OF WOODWAY ANNUAL WATER QUALITY REPORT 2024

Consumer Confidence Report

Contact: Mitch Davison, Community Services & Development Director

Email: mdavison@woodwaytexas.gov

Telephone: 254.772.4050

Website: www.woodwaytexas.gov

DRINKING WATER

You may be more vulnerable than the general population to certain microbial contaminants, such as cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer, those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by cryptosporidium are available from the *SAFE DRINKING WATER HOTLINE at (800) 426-4791*.

Public Participation Opportunities

The City of Woodway Water Utility Department is governed by the Woodway City Council. The City Council meets the 2nd and 4th Mondays each month at 5:30 p.m. at the Woodway City Hall located at 922 Estates Drive. To learn more about future public meetings (regarding drinking water) or to request to schedule one, please contact us at (254) 772-4050 or (254) 772-4480.

Our Drinking Water is Regulated

This report is summary of the quality of the water we provide our customers. The analysis was made by using data from the most recent U.S. Environmental Protection (EPA) required tests. We hope this information helps you become more knowledgeable about your drinking water.

En español

Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en español, favor de llamar al tel. (254) 772-4050 para hablar con una persona bilingüe en español.

Prevent Storm Water Pollution

Motor oil, paint, fertilizer, or anything that is on the ground when it rains all gets washed into the storm drain system along with the rain. Unlike wastewater (which is treated), storm water runoff goes into creeks, lakes, and rivers. This is why disposing of oil, pesticides, and other chemicals properly is very important. Always use and dispose of chemicals in accordance with product labels.

WATER SOURCES

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include: rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive materials, and can pick up substances resulting from presence of animals or from human activity. Contaminants that may be present in source water before treatment include: Microbial contaminants, such as viruses & bacteria, which may come from sewage treatment plants, septic systems, and agricultural livestock operations & wildlife. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or results from urban storm water runoff, industrial, or domestic wastewater discharges, oil, and gas production, mining or farming. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff and septic systems. Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Reduce the F.O.G. (fats, oils & grease)

Fats, oils, and grease that are poured into drains or toilets solidify as they cool in the pipes, clogging up the system. You can help by practicing these FOG reducing tips:

<u>DO NOT</u>: put food down the drain; use the disposal excessively; pour oil or grease down the drain; or rinse grease from cookware into the sink or drain.

<u>DO</u>: cover sink drain with catch baskets and empty into waste bin; dry-wipe oil/grease from cookware; put used cooking oil in a covered container and dispose of.

Where do we get our drinking water?

Our drinking water is obtained from surface and ground water sources. It comes from six (6) wells located within the City, pumping from the Hosston Member of the Trinity Group Aquifer with supplemental supply from Waco. Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality (TCEQ). This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows to focus our source water protection strategies. Some of this source water assessment information will be available later this year on Texas Drinking Water Watch at http://dww.tceq.state.tx.us/DWW/. For more information on source water assessment and protection efforts at our system, contact Woodway Community Services at (254) 772-4050.

Did you know?

The human body is about 75% water, by the time a person feels thirsty, his or her body has lost over 1% of its total water amount. Although soft drinks, coffee, and tea are made up almost entirely of water, they also contain caffeine, which can prevent water from traveling to necessary locations in the body. A person can survive about a month without food, but only 5 to 7 days without water. *Find more interesting water facts at: allaboutwater.org.*

ALL drinking water may contain contaminants

When drinking water meets federal standards there may not be any health-based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents (secondary constituents) are regulated by the State of Texas. These constituents are neither cause for health concern nor required to be reported in this document; however, they may greatly affect the appearance and taste of your water.

Definitions

Maximum Contaminant Level (MCL):

The highest permissible level of a contaminant in drinking water. MCLs are set as close as to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG):

The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL):

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG):

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Treatment Technique (TT):

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL):

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Abbreviations

MFL million fibers per liter (a measure of asbestos)

NTU nephelometric turbidity units (a measure of turbidity)

pCi/L picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

ppt parts per trillion, or nanograms per liter (ng/L)

2024 WATER QUALITY TEST RESULTS

Year or	Contaminant	Highest	Range of	MCLG	MCL	Unit of		Source of Contaminant
Range		Level Detected	Individual Samples			Measure	Violation	
2023- 2025	Arsenic	5.2	0 - 5.2	0	10	ppb	N	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
2023- 2025	Barium	0.141	0.0301 - 0.141	2	2	ppm	N	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
2023	Fluoride	1.78	0.72 - 1.78	4	4	ppm	N	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2024- 2025	Nitrate (measured as Nitrogen)	0.26	0.06 - 0.26	10	10	ppm	N	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
2023- 2025	Selenium	10.9	0 - 10.9	50	50	ppb	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.
2023	Cyanide	20	0 - 20	200	200	ppb	N	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories.
2021- 2023	Nitrite (measured as Nitrogen)	<0.05	<0.05	1	1	ppm	N	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.

Maximum Residual Disinfectant Level

Year	Disinfectant	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Violation	Source of Chemical
2024	Chloramine Residual	0.2	3.9	4	4	ppm	N	Disinfectant used (for Woodway's purchased source water) to control microbes

Disinfection Byproducts

Year	Contaminant	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Source of Contaminant
2024	Total Halo acetic Acids (HAA5)	29.9	6.6 - 29.9	No goal for the total	60	ppb	N	Byproduct of drinking water
2024	Total Trihalomethanes (TThm)	48.9	15.4 - 48.9	No goal for the total	80	ppb	N	disinfection.

Volatile Organic Contaminants

Year	Contaminant	Highest Level Detecte d	Range of Individual Samples	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
2024-2025	Ethylbenzene	0	0	700	700	ppb	N	Discharge from petroleum refineries.
2024-2025	Xylenes	0	0	10	10	ppm	N	Discharge from petroleum factories; discharge from chemical factories.

Radioactive Contaminants

Year	Contaminant	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
	Combined							
	Radium							Erosion of natural
2013-2022	226 & 228	2.25	0.6 - 2.25	0	5	pCi/L	N	deposits.
	Beta/photon							Decay of natural and man-made
2019-2023	emitters	4.6	0 - 4.6	0	50	pCi/L	N	deposits.
	Gross Alpha excluding radon &							Erosion of natural
2019-2023	uranium	7.5	0 - 7.5	0	15	pCi/L	N	deposits.
2015-2023	uraillulli	7.5	0 - 7.5	U	1.0	PCI/L	IV	ueposits.

2025 Fecal Coliform: REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA 2025 Total Coliform: REPORTED MONTHLY TESTS FOUND NO COLIFORM BACTERIA.

Unregulated Contaminants
(These contaminants are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point of distribution.)

Year	Contaminant	Minimum Level	Maximum Level	Unit of Measure	Source of Contaminant
2024-2025	Bromoform	1.5	5.9	ppb	
2024-2025	Bromodichloromethane	<1.0	6.0	ppb	Byproduct of
2024-2025	Chloroform	<1.0	3.7	ppb	drinking water disinfection.
2024-2025	Dibromochloromethane	1	8.8	ppb	disinfection.

Synthetic Organic Contaminants Including Pesticides and Herbicides

Year	Contaminant	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
2023- 2025	Atrazine	<0.1	<0.1	3	3	ppb	N	Runoff from herbicide used on row crops
2023	Dalapon	<1.0	<1.0	200	200	ppb	N	Discharge from petroleum factories; discharge from chemical factories.

Secondary and Other Constituents Not Regulated

(No associated adverse health effects)

Year or	Constituent	Average Level	Minimum Level	Maximum Level	Secondary Limit	Unit of Measure	Source of Contaminant
Range		Level	Level	Level	LIIIIL	ivieasure	
			_				Abundant naturally occurring
2023-2025	Aluminum	0.027	0	0.0575	N/A	ppm	element.
0000	5: 1 .	004	400	400			Corrosion of carbonate rocks such as
2023	Bicarbonate	321	183	439	N/A	ppm	limestone.
2023-2025	Calcium	20	2.88	43	N/A	ppm	Abundant naturally occurring element.
							Abundant naturally occurring element;
							used in water purification; byproduct of oil
2023	Chloride	77	32	151	N/A	ppm	field activity.
							Erosion of natural deposits; iron or steel
2023-2025	Iron	0.01	0	0.019	N/A	ppm	water delivery equipment or facilities.
	11 011				,	ppiii	, , ,
2023-2025	Magnesium	3.94	1.04	7.85	N/A	ppm	Abundant naturally occurring element.
				0.0040			
2023-2025	Manganese	0.002	0	0.0043	N/A	ppm	Abundant naturally occurring element.
							Erosion of natural deposits; by products of
2023-2025	Sodium	185.93	64.9	284	N/A	ppm	oil field activity.
							Naturally occurring; common industrial
2023	Sulfate	109	40	219	300	ppm	byproduct; byproduct of oil field activity.
	Total						
	Alkalinity as						
2023	CaCO3	265	150	360	N/A	ppm	Naturally occurring soluble mineral salts.
	Total						
	Dissolved	50.4	244		4000		Total dissolved mineral constituents in
2023	Solids	584	314	808	1000	ppm	water.
	Total						
2022 2025	Hardness as	66.46	11 E	140	NI/A	nnm	Naturally occurring calcium
2023-2025	CaCO3	66.46	11.5	140	N/A	ppm	Naturally occurring calcium. Moderately abundant naturally occurring
2023-2025	Zinc	0	0	0	5	nnm	element; used in the metal industry.
2023-2023	ZITIC	U	U	U	J	ppm	element, used in the illetal illudstry.

Lead and Copper

100000000	Ecda dila Coppei									
Year	Contaminant	MCLG	90th	Action	# Of Sites	Unit of	Violation	Source of Contaminant		
			Percentile	Level	over All	Measure				
								Corrosion of household plumbing		
								systems; erosion of natural		
2022	Lead	0	<5.0	15	20	ppb	N	deposits.		
								Corrosion of household plumbing		
								systems; erosion of natural		
								deposits. Leaching from wood		
2022	Copper	1.3	0.1048	1.3	20	ppm	N	preservatives.		

Lead Service Line Inventory Statement

In accordance with EPA regulations, the City of Woodway has completed a comprehensive Service Line Inventory. The inventory confirms that there are no known lead service lines, no galvanized lines requiring replacement, and no unknown service lines in the water distribution system.

The Service Line Inventory is available for public review at Community Services & Development, located at 924 Estates Drive, Woodway, Texas 76712, during regular business hours.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead

Violation

Compliance Period: 11/1/2024 - 11/30/2024

Our system failed to collect every required coliform sample. Although this incident was not an emergency, as our customers, you have a right to know what happened and what we did (are doing) to correct this situation. We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the month of November we did not complete all monitoring or testing for coliform bacteria and therefore cannot be sure of the quality of your drinking water during that time.

...What should I do?

There is nothing you need to do at this time. You may continue to drink the water. If a situation arises where the water is no longer safe to drink, we are required to notify you within 24 hours.

...What is being done?

We collected every required coliform sample in December 2024 and are no longer in violation.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail. For more information, please contact Community Services and Development at 254-772-4050.

Public Water System ID#: TX1550048

City of Waco (Reported test results)

Contaminant	Unit	Highest Level Detected	Min-Max Levels	Maximum Allowable Contaminant Level
Arsenic	ppb	0	0	10
Atrazine	ppb	0	0	3
Bromate	ppb	13.4	0-13.4	10
Barium	ppb	0.0411	0.0410 - 0.0411	2
Fluoride	ppb	0.42	0.14 - 0.42	4
		100% of the rea		
Turbidity	NTU		PASS	
		The percentag		
		removal was me		
TOC		system met all TO	OC removal requirements set.	PASS

Understanding PFAS & UCMR5

The EPA's Unregulated Contaminant Monitoring Rule 5 (UCMR5) requires public water systems to test for emerging contaminants, including 29 types of PFAS—man-made chemicals found in consumer products such as food packaging, nonstick cookware, water-resistant clothing, and firefighting foam. These substances are persistent in the environment and difficult to remove from drinking water.

PFAS can enter water supplies through contact with runoff, spills, wastewater discharge, or landfills. The EPA is continually studying ways to detect, monitor, and reduce PFAS in drinking water.

The EPA rule addresses six PFAS chemicals with set maximum contaminant levels (MCLs):

- PFOA perfluorooctanoic acid (MCL 4.0 ppt)
- PFOS perfluorooctanesulfonic acid (MCL 4.0 ppt)
- PFHxS perfluorohexanesulfonic acid (MCL 10 ppt)
- PFNA perfluorononanoic acid (MCL 10 ppt)
- HFPO-DA (also known as GENX) hexafluoropropylene oxide-dimer acid (MCL 10 ppt)
- Mixtures of PFHxS, PFNA, HFPO-DA, and PFBS (MCL Hazard Index of 1)

No PFAS chemicals exceeded their individual or combined health-based thresholds

As part of the EPA's Unregulated Contaminant Monitoring Rule (UCMR5), we tested for lithium at our water facilities in 2024, including Bosque, Tater Hill, Santa Fe, Business Acres, Acorn, and Highway 84. Lithium was detected at varying levels, with results ranging from 20.9 μ g/L to 403 μ g/L. While there is currently no federal drinking water standard for lithium, the EPA has identified a non-regulatory health reference level of 10 μ g/L based on preliminary health information. It's important to note that this number is not an enforceable limit but a screening tool used to guide future research. The U.S. Geological Survey also provides a higher, alternative screening level of 60 μ g/L for context when evaluating naturally occurring lithium in groundwater. Many public water systems in Texas have reported similar levels. We are continuing to monitor lithium closely and will stay informed as the EPA develops more guidance in the future.

We remain committed to monitoring our drinking water quality and providing safe, reliable service to our community.

For more information on PFAS and UCMR5 sampling, visit epa.gov/ucmr or contact our office at 254-772-4050.