CITY OF WOODWAY ANNUAL WATER QUALITY REPORT 2023

Consumer Confidence Report

Contact: Mitch Davison, Community Services & Development Director Email: mdavison@woodwaytexas.gov Telephone: 254.772.4050 Website: www.woodwaytexas.gov

DRINKING WATER

You may be more vulnerable than the general population to certain microbial contaminants, such as cryptosporidium, in drinking water. Infants, some elderly or immune-compromised persons such as those undergoing chemotherapy for cancer, those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by cryptosporidium are available from the *SAFE DRINKING WATER HOTLINE at (800) 426-4791*.

Public Participation Opportunities

The City of Woodway Water Utility Department is governed by the Woodway City Council. The City Council meets the 2nd and 4th Mondays each month at 5:30 p.m. at the Woodway City Hall located at 922 Estates Drive. To learn more about future public meetings (regarding drinking water) or to request to schedule one, please contact us at (254) 772-4050 or (254) 772-4480.

Our Drinking Water is Regulated

This report is summary of the quality of the water we provide our customers. The analysis was made by using data from the most recent U.S. Environmental Protection (EPA) required tests. We hope this information helps you become more knowledgeable about your drinking water.

En español

Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en español, favor de llamar al tel. (254) 772-4050 para hablar con una persona bilingüe en español.

Prevent Storm Water Pollution

Motor oil, paint, fertilize, or anything that is on the ground when it rains all gets washed into the storm drain system along with the rain. Unlike wastewater (which is treated), storm water runoff goes into creeks, lakes, and rivers. This is why disposing of oil, pesticides, and other chemicals properly is very important. Always use and dispose of chemicals in accordance with product labels.

WATER SOURCES

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include: rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive materials, and can pick up substances resulting from presence of animals or from human activity. Contaminants that may be present in source water before treatment include: Microbial contaminants, such as viruses & bacteria, which may come from sewage treatment plants, septic systems, and agricultural livestock operations & wildlife. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or results from urban storm water runoff, industrial, or domestic wastewater discharges, oil, and gas production, mining or farming. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff and septic systems. Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Reduce the F.O.G. (*fats, oils & grease*)

Fats, oils, and grease that are poured into drains or toilets solidify as they cool in the pipes, clogging up the system. You can help by practicing these FOG reducing tips:

DO NOT: put food down the drain; use the disposal excessively; pour oil or grease down the drain; or rinse grease from cookware into the sink or drain.

<u>DO</u>: cover sink drain with catch baskets and empty into waste bin; dry-wipe oil/grease from cookware; put used cooking oil in a covered container and dispose of.

Where do we get our drinking water?

Our drinking water is obtained from surface and ground water sources. It comes from six (6) wells located within the City, pumping from the Hosston Member of the Trinity Group Aquifer with supplemental supply from Waco. Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality (TCEQ). This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows to focus our source water protection strategies. Some of this source water assessment information will be available later this year on Texas Drinking Water Watch at http://dww.tceq.state.tx.us/DWW/. For more information on source water assessment and protection efforts at our system, contact Woodway Community Services at (254) 772-4050.

Did you know?

The human body is about 75% water, by the time a person feels thirsty, his or her body has lost over 1% of its total water amount. Although soft drinks, coffee, and tea are made up almost entirely of water, they also contain caffeine, which can prevent water from traveling to necessary locations in the body. A person can survive about a month without food, but only 5 to 7 days without water. *Find more interesting water facts at: allaboutwater.org.*

ALL drinking water may contain contaminants

When drinking water meets federal standards there may not be any health-based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents (secondary constituents) are regulated by the State of Texas. These constituents are neither cause for health concern nor required to be reported in this document; however, they may greatly affect the appearance and taste of your water.

Definitions

Maximum Contaminant Level (MCL):

The highest permissible level of a contaminant in drinking water. MCLs are set as close as to the MCLGs as feasible using the best available treatment technology.

Maximum Residual Disinfectant Level Goal (MCLG):

The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Treatment Technique (TT):

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL):

The concentration of a contaminant which, if exceeded triggers treatment or other requirements which a water system must follow.

Abbreviations

- MFL million fibers per liter (a measure of asbestos)
- NTU nephelometric turbidity units (a measure of turbidity)
- pCi/L picocuries per liter (a measure of radioactivity)
- **ppb:** micrograms per liter or parts per billion or one ounce in 7,350,000 gallons of water.
- **ppm:** milligrams per liter or parts per million or one ounce in 7,350 gallons of water.
- **ppt** parts per trillion, or nanograms per liter (ng/L)

2023 WATER QUALITY TEST RESULTS

Year or Range	Contaminant	Highest Level	Range of Individual	MCLG	MCL	Unit of Measure	X70 X (0	Source of Contaminant
Range		Detected	Samples			Wiedsure	Violation	
2022-								Erosion of natural deposits; runoff from orchards; runoff from glass
2023	Arsenic	5.2	0-5.2	0	10	ppb	Ν	and electronics production wastes
2022- 2023	Barium	0.141	0.0301- 0.141	2	2	ppm	N	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
2023	Fluoride	1.78	0.72-1.78	4	4	ppm	N	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2023- 2024	Nitrate (measured as Nitrogen)	1.24	0.06-1.24	10	10	ppm	N	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
2022- 2023	Selenium	10.9	0-10.9	50	50	ppb	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.
2023	Cyanide	20	0-20	200	200	ppb	N	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories.
2021- 2023	Nitrite (measured as Nitrogen)	<0.05	<0.05	1	1	ppm	N	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.

Maximum Residual Disinfectant Level

Year	Disinfectant	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Violation	Source of Chemical
2022	Chloramine Residual	0.5	3.6	4	4	ppm	Z	Disinfectant used (for Woodway's purchased source water) to control microbes

Disinfection Byproducts

Year	Contaminant	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Source of Contaminant
2023	Total Halo acetic Acids (HAA5)	16.3	7.8-16.3	No goal for the total	60	ppb	N	Byproduct of drinking water
2023	Total Trihalomethanes (TThm)	58.8	29.2-58.8	No goal for the total	80	ppb	N	disinfection.

Volatile Organic Contaminants

Year	Contaminant	Highest Level Detecte d	Range of Individual Samples	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
2023-2024	Ethylbenzene	0	0	700	700	ppb	Ν	Discharge from petroleum refineries.
2023-2024	Xylenes	0	0	10	10	ppm	Ν	Discharge from petroleum factories; discharge from chemical factories.

Radioactive Contaminants

Year	Contaminant	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
	Combined Radium							Erosion of natural
2013-2023	226 & 228	2.25	0-2.25	0	5	pCi/L	Ν	deposits.
2020-2023	Beta/photon emitters	4.6	0-4.6	0	50	pCi/L	Ν	Decay of natural and man-made deposits.
2019-2023	Gross Alpha excluding radon & uranium	7.5	0-7.5	0	15	pCi/L	Ν	Erosion of natural deposits.

2022 Fecal Coliform: REPORTED MONTHLY TESTS FOUND NO FECAL COLIFORM BACTERIA 2022 Total Coliform: REPORTED MONTHLY TESTS FOUND NO COLIFORM BACTERIA.

Unregulated Contaminants

(These contaminants are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point of distribution.)

Year	Contaminant	Minimum Level	Maximum Level	Unit of Measure	Source of Contaminant
2023-2024	Bromoform	1.1	7.8	daa	
2023_2024	Bromodichloromethane	<1.0	9.8	nnh	Byproduct of
2023-2024	Chloroform	<1.0	6.5	ppb	drinking water
2023 2024	chioroform	×1.0	0.5	ppp	disinfection.
2022-2023	Dibromochloromethane	<1.0	8.5	ppb	

Synthetic Organic Contaminants Including Pesticides and Herbicides

Year	Contaminant	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
2021-								Runoff from
2024	Atrazine	<0.1	<0.1	3	3	ppb	Ν	row crops
								Discharge from petroleum factories; discharge from
2023	Dalapon	<1.0	<1.0	515.4	515.4	ppb	Ν	chemical factories.

Secondary and Other Constituents Not Regulated

(No associated adverse health effects)

Year or Range	Constituent	Average Level	Minimum Level	Maximum Level	Secondary Limit	Unit of Measure	Source of Contaminant
2020-2023	Aluminum	0.025	0	0.0575	N/A	ppm	Abundant naturally occurring element.
2023	Bicarbonate	321	183	439	N/A	ppm	Corrosion of carbonate rocks such as limestone.
2022-2023	Calcium	21	2.88	43	N/A	ppm	Abundant naturally occurring element.
2023	Chloride	77	32	151	N/A	ppm	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2022-2023	Iron	0.01	0	0.019	N/A	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
2022-2023	Magnesium	4.14	1.04	7.85	N/A	ppm	Abundant naturally occurring element.
2022-2023	Manganese	0.002	0	0.0043	N/A	ppm	Abundant naturally occurring element.
2022-2023	Sodium	171.5	64.9	284	N/A	ppm	Erosion of natural deposits; by products of oil field activity.
2023	Sulfate	109	40	219	300	ppm	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2023	Total Alkalinity as CaCO3	265	150	360	N/A	ppm	Naturally occurring soluble mineral salts.
2023	Total Dissolved Solids	584	314	808	1000	ppm	Total dissolved mineral constituents in water.
2022-2023	Total Hardness as CaCO3	69.6	11.5	140	N/A	ppm	Naturally occurring calcium.
2022-2023	Zinc	0	0	0	5	ppm	Moderately abundant naturally occurring element; used in the metal industry.

Lead and Copper

Year	Contaminant	MCLG	90th Percentile	Action Level	# Of Sites over All	Unit of Measure	Violation	Source of Contaminant
2022	Lead	0	<5.0	15	20	ppb	NO	Corrosion of household plumbing systems; erosion of natural deposits.
								Corrosion of household plumbing systems; erosion of natural deposits. Leaching from wood
2022	Copper	1.3	0.1048	1.3	20	ppm	NO	preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead

City of Waco (Reported test results)

Contaminant	Unit	Highest Level Detected	Min-Max Levels	Maximum Allowable Contaminant Level			
Arsenic	ppb	2.6	2.5 -2.6	10			
Selenium	ppb	3.1	<3.0 - 3.1				
Atrazine	ppb	0.12	0.10 - 0.12	3			
Cyanide	ppb	130	70-130	200			
Bromate	ppb	9.9	<5 - 9.9	10			
Barium	ppb	0.428	0.0425 - 0.0428	2			
Fluoride	ppb	0.69	0.23 - 0.69	4			
Turbidity	NTU	100% of the read	100% of the readings were at or below 0.3 NTU				
тос	%	The % of TOC ren month and the	The % of TOC removal was measured each month and the system met defined TOC removal criteria.				

1

Sample Event Code/Sample Sc	hedule SE 1	Jan 20	024
Facility ID Bosque 10003			
Sample Point ID/Type/Name	G1550048D	EP	Bosque

Sample Kit ID	Method ID	Analyte Name	Collection Date	Reported Value
112385 P	EPA 200 7	Lithium	1/22/24	(µg/L)
112385 P	EPA 533	PFBS	1/22/24	< 0.003
112385 P	EPA 533	PFHpA	1/22/24	< 0.003
112385 P	EPA 533	PFHxS	1/22/24	< 0.003
112385 P	EPA 533	PFNA	1/22/24	< 0.004
112385 P	EPA 533	PFOS	1/22/24	< 0.004
112385 P	EPA 533	PFOA	1/22/24	< 0.004
112385 P	EPA 533	PFDA	1/22/24	< 0.003
112385 P	EPA 533	PFDoA	1/22/24	< 0.003
112385 P	EPA 533	PFHxA	1/22/24	< 0.003
112385 P	EPA 533	PFUnA	1/22/24	< 0.002
112385 P	EPA 533	11Cl-PF3OUdS	1/22/24	< 0.005
112385 P	EPA 533	9Cl-PF3ONS	1/22/24	< 0.002
112385 P	EPA 533	ADONA	1/22/24	< 0.003
112385 P	EPA 533	HFPO-DA	1/22/24	< 0.005
112385 P	EPA 533	PFBA	1/22/24	=0.0057
112385 P	EPA 533	6:2 FTS	1/22/24	< 0.005
112385 P	EPA 533	4:2 FTS	1/22/24	< 0.003
112385 P	EPA 533	8:2 FTS	1/22/24	< 0.005
112385 P	EPA 533	PFMPA	1/22/24	< 0.004
112385 P	EPA 533	PFPeA	1/22/24	< 0.003
112385 P	EPA 533	PFMBA	1/22/24	< 0.003
112385 P	EPA 533	PFEESA	1/22/24	< 0.003
112385 P	EPA 533	NFDHA	1/22/24	< 0.02
112385 P	EPA 533	PFPeS	1/22/24	< 0.004
112385 P	EPA 533	PFHpS	1/22/24	< 0.003
112385P	EPA 537.1	PFTA	1/22/24	< 0.008
112385P	EPA 537.1	PFTrDA	1/22/24	< 0.007
112385P	EPA 537.1	NEtFOSAA	1/22/24	< 0.005
112385P	EPA 537.1	NMeFOSAA	1/22/24	< 0.006

Sample Event Code/Sample Sche	dule SE1	Jan 2024		
Facility ID/Name Tater Hill	10004			
Sample Point ID/Type/Name	G15500481	B EP	Tater Hill	

Sample Kit ID	Method ID	Analyte Name	Collection Date	Reported Value
				(µg/L)
112386P	EPA 533	PFBS	1/23/24	< 0.003
112386P	EPA 533	PFHpA	1/23/24	< 0.003
112386P	EPA 533	PFHxS	1/23/24	< 0.003
112386P	EPA 533	PFNA	1/23/24	< 0.004
112386P	EPA 533	PFOS	1/23/24	< 0.004
112386P	EPA 533	PFOA	1/23/24	< 0.004
112386P	EPA 533	PFDA	1/23/24	< 0.003
112386P	EPA 533	PFDoA	1/23/24	< 0.003
112386P	EPA 533	PFHxA	1/23/24	< 0.003
112386P	EPA 533	PFUnA	1/23/24	< 0.002
112386P	EPA 533	11Cl-PF3OUdS	1/23/24	< 0.005
112386P	EPA 533	9C1-PF3ONS	1/23/24	< 0.002
112386P	EPA 533	ADONA	1/23/24	< 0.003
112386P	EPA 533	HFPO-DA	1/23/24	< 0.005
112386P	EPA 533	PFBA	1/23/24	=0.0057
112386P	EPA 533	6:2 FTS	1/23/24	< 0.005
112386P	EPA 533	4:2 FTS	1/23/24	< 0.003
112386P	EPA 533	8:2 FTS	1/23/24	< 0.005
112386P	EPA 533	PFMPA	1/23/24	< 0.004
112386P	EPA 533	PFPeA	1/23/24	< 0.003
112386P	EPA 533	PFMBA	1/23/24	< 0.003
112386P	EPA 533	PFEESA	1/23/24	< 0.003
112386P	EPA 533	NFDHA	1/23/24	< 0.02
112386P	EPA 533	PFPeS	1/23/24	< 0.004
112386P	EPA 200.7	LITHIUM	1/23/24	=73.8
112386P	EPA 537.1	PFTA	1/23/24	< 0.008
112386P	EPA 537.1	PFTrDA	1/23/24	< 0.007
112386P	EPA 537.1	NEtFOSAA	1/23/24	< 0.005
112386P	EPA 537.1	NMeFOSAA	1/23/24	< 0.006

Sample Event Code/Sample Schedule S	SE1 Jan 202	4	
Facility ID/NameBusiness Acres	10005		
Sample Point ID/Type/Name	G1550048H	EP	Business Acres

Sample Kit ID	Method ID	Analyte Name	Collection Date	Reported Value (µg/L)
112387P	EPA 533	PFBS	1/24/24	< 0.003
112387P	EPA 533	PFHpA	1/24/24	< 0.003
112387P	EPA 533	PFHxS	1/24/24	< 0.003
112387P	EPA 533	PFNA	1/24/24	< 0.004
112387P	EPA 533	PFOS	1/24/24	< 0.004
112387P	EPA 533	PFOA	1/24/24	< 0.004
112387P	EPA 533	PFDA	1/24/24	< 0.003

112387P	EPA 533	PFDoA	1/24/24	< 0.003
112387P	EPA 533	PFHxA	1/24/24	< 0.003
112387P	EPA 533	PFUnA	1/24/24	< 0.002
112387P	EPA 533	11Cl-PF3OUdS	1/24/24	< 0.005
112387P	EPA 533	9C1-PF3ONS	1/24/24	< 0.002

Sample Event Code/Sample Schedule S	SE1 Jan 20	24		
Facility ID/NameBusiness Acres	10005			
Sample Point ID/Type/Name	G1550048H	EP	Business Acres	

Sample Kit ID	Method ID	Analyte Name	Collection Date	Reported Value (µg/L)
112387P	EPA 533	ADONA	1/24/24	< 0.003
112387P	EPA 533	HFPO-DA	1/24/24	< 0.005
112387P	EPA 533	PFBA	1/24/24	< 0.005
112387P	EPA 533	6:2 FTS	1/24/24	< 0.005
112387P	EPA 533	4:2 FTS	1/24/24	< 0.003
112387P	EPA 533	8:2 FTS	1/24/24	< 0.005
112387P	EPA 533	PFMPA	1/24/24	< 0.004
112387P	EPA 533	PFPeA	1/24/24	< 0.003
112387P	EPA 533	PFMBA	1/24/24	< 0.003
112387P	EPA 533	PFEESA	1/24/24	< 0.003
112387P	EPA 533	NFDHA	1/24/24	< 0.02
112387P	EPA 533	PFPeS	1/24/24	< 0.004
112387P	EPA 533	PFHps	1/24/24	< 0.003
112387P	EPA 537.1	PFTA	1/24/24	< 0.008
112387P	EPA 537.1	PFTrDA	1/24/24	< 0.007
112387P	EPA 537.1	NEtFOSAA	1/24/24	< 0.005
112387P	EPA 537.1	NMeFOSAA	1/24/24	< 0.006
112387P	EPA 200.7	LITHIUM	1/23/24	=73.8

Sample Even Coe/Sample Schedu	le SE1	Jan 2024		
Facility ID/Name Acorn	10007			
Sample Point ID/Type/Name	G1550048C	EP	Acorn	

Sample Kit ID	Method ID	Analyte Name	Collection Date	Reported Value (µg/L)
112388P	EPA 537.1	PFTA	1/24/24	< 0.008
112388P	EPA 537.1	PFTrDA	1/24/24	< 0.007
112388P	EPA 537.1	NEtFOSAA	1/24/24	< 0.005
112388P	EPA 537.1	NMeFOSAA	1/24/24	< 0.006
112388P	EPA 200.7	LITHIUM	1/24/24	=86.6
112388P	EPA 533	PFBS	1/24/24	< 0.003

Sample Even Coe/Sample Schedule	e SE1	Jan 2024	
Facility ID/Name Acorn	10007		
Sample Point ID/Type/Name	G1550048C	EP	Acorn

Sample Kit ID	Method ID	Analyte Name	Collection Date	Reported Value
		7 mary te 1 (ante		(µg/L)
112388P	EPA 533	PFHpA	1/24/24	< 0.003
112388P	EPA 533	PFHxS	1/24/24	< 0.003
112388P	EPA 533	PFNA	1/24/24	< 0.004
112388P	EPA 533	PFOS	1/24/24	< 0.004
112388P	EPA 533	PFOA	1/24/24	< 0.004
112388P	EPA 533	PFDA	1/24/24	< 0.003
112388P	EPA 533	PFDoA	1/24/24	< 0.003
112388P	EPA 533	PFHxA	1/24/24	< 0.003
112388P	EPA 533	PFUnA	1/24/24	< 0.002
112388P	EPA 533	11Cl-PF3OUdS	1/24/24	< 0.005
112388P	EPA 533	9C1-PFG3ONA	1/24/24	< 0.002
112388P	EPA 533	ADONA	1/24/24	< 0.003
112388P	EPA 533	HFPO-DA	1/24/24	< 0.005
112388P	EPA 533	PFBA	1/24/24	< 0.005
112388P	EPA 533	6:2 FTS	1/24/24	< 0.005
112388P	EPA 533	4:2 FTS	1/24/24	< 0.003
112388P	EPA 533	8:2 FTS	1/24/24	< 0.005
112388P	EPA 533	PFMPA	1/24/24	< 0.004
112388P	EPA 533	PFPeA	1/24/24	< 0.003
112388P	EPA 533	PFMBA	1/24/24	< 0.003
112388P	EPA 533	PFEESA	1/24/24	< 0.003
112388P	EPA 533	NFDHA	1/24/24	< 0.02
112388P	EPA 533	PFPeS	1/24/24	< 0.004
112388P	EPA 533	PFHpS	1/24/24	< 0.003

Sample Even Coe/Sample Schedule	SE1	Jan 2024	
Facility ID/Name Santa Fe	10001		
Sample Point ID/Type/Name	G1550048E	EP	Santa Fe

Sample Kit ID	Method ID	Analyte Name	Collection Date	Reported Value (µg/L)
112383P	EPA 200.7	Lithium	1/24/24	=43.6
112383P	EPA 537.1	PFTA	1/24/24	< 0.008
112383P	EPA 537.1	PFTrDA	1/24/24	< 0.007
112383P	EPA 537.1	NEtFOSSAA	1/24/24	< 0.005
112383P	EPA 537.1	NMeFOSAA	1/24/24	< 0.006
112383P	EPA 533	PFBS	1/24/24	< 0.003
112383P	EPA 533	PFHpA	1/24/24	< 0.003

Sample Even Coe/Sample Schedule	SE1	Jan 2024	
Facility ID/Name Santa Fe	10001		
Sample Point ID/Type/Name	G1550048E	EP	Santa Fe

Samula V:4 ID	Method ID	Analyte	Collection Date	Reported Value
Sample Kit ID				(μg/L)
112383	EPA 533	PFHxS	1/24/24	< 0.003
112383P	EPA 533	PFNA	1/24/24	< 0.004
112383P	EPA 533	PFOS	1/24/24	< 0.004
112383P	EPA 533	PFOA	1/24/24	< 0.004
112383P	EPA 533	PFDA	1/24/24	< 0.003
112383P	EPA 533	PFDoA	1/24/24	< 0.003
112383P	EPA 533	PFHxA	1/24/24	< 0.003
112383P	EPA 533	PFUnA	1/24/24	< 0.002
112383P	EPA 533	11CL-PF3OUdS	1/24/24	< 0.005
112383P	EPA 533	9C1-PF3ONS	1/24/24	0.002
112383P	EPA 533	ADONA	1/24/24	< 0.003
112383P	EPA 533	HFPO-DA	1/24/24	< 0.005
112383P	EPA 533	PFBA	1/24/24	< 0.005
112383P	EPA 533	6:2 FTS	1/24/24	< 0.005
112383P	EPA 533	4:2 FTS	1/24/24	< 0.003
112383P	EPA 533	8:2 FTS	1/24/24	< 0.005
112383P	EPA 533	PFMPA	1/24/24	< 0.004
112383P	EPA 533	PFPeA	1/24/24	< 0.003
112383P	EPA 533	PFMB	1/24/24	< 0.003
112383P	EPA 533	PFEESA	1/24/24	< 0.003
112383P	EPA 533	NFDHA	1/24/24	< 0.02
112383P	EPA 533	PFPeS	1/24/24	< 0.004
112383P	EPA 533	PFHpS	1/24/24	< 0.003